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Planar isothermal solidification from an undercooled melt: Unsteady solute segregation studied
with the phase-field model

M. Conti
Dipartimento di Matematica e Fisica, Universita’ di Camerino, 62032 Camerino, Italy

~Received 10 June 1996!

The planar isothermal solidification of a binary alloy is studied through the phase-field model. The model
includes gradient energy terms for both the phase and concentration fields. The long time attractor of the
process was identified in a previous study by Wheeler, Boettinger, and McFadden@Phys. Rev. E47, 1893
~1993!# in the limit of vanishing small values ofe/d, wheree andd are the coefficients of the phase-field and
concentration gradient energies, respectively. In that limit the main results of the continuous growth model
~CGM! of Aziz and Kaplan@Acta Metall.36, 2335~1988!# were substantially recovered. The present study is
focused on the first transient of the process, when the solute profile is not yet fully developed. We found that
in this stage the solute segregation at the solid-liquid interface deviates from the predictions of the CGM, as the
solute partitioning is contrasted by the energy cost required to substain large concentration gradients.
@S1063-651X~97!07901-4#

PACS number~s!: 64.70.Dv, 68.10.Gw, 81.30.Bx, 82.65.Dp
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I. INTRODUCTION

The understanding and prediction of the interfacial d
namics in rapid solidification of binary alloys is a matter
growing interest. The subject was addressed in several s
ies and through different perspectives.

Sharp interface models utilize the diffusion equation
describe the long range transport of solute@1,2#; the bound-
ary conditions imposed at the solid-liquid interface refle
two different constraints:~i! the conservation of solute acros
the moving front, and~ii ! a couple of constitutive laws tha
relate the composition of the growing solid and the fro
velocity v to the temperatureT and to the interfacial mel
composition. The latter conditions are derived through
separate modelization of the interface kinetics on a mic
scopic scale. Much effort has been devoted to this point.
well known that in rapid solidification processes the partiti
coefficientk ~the ratio of solute concentrationc in the grow-
ing solid to that in the liquid at the interface! deviates from
its equilibrium valueke and increases towards unity at larg
growth rates. This phenomenon, termed ‘‘solute trappin
@3#, was explained by Aziz and Kaplan@4# and Aziz and
Boettinger@5# within the continuous growth model~CGM!
as the result of a diffusive redistribution of the solute and
solvent across the moving front.

A different technique to investigate alloy solidification
based on the phase-field model~PFM!. Within this approach
a phase fieldf(x,t) characterizes the phase of the system
each point. A free-energy~or entropy! functional is then con-
structed, that depends onf as well as on the concentratio
and temperature fields. Gradient terms account for the en
cost associated to the solid-liquid interface. The extrem
tion of the functional in respect to these variables results
the dynamic equations for the evolution of the process
first PFM for solidification of binary solutions was deve
oped by Wheeler, Boettinger, and McFadden~WBM1! @6# in
the isothermal approximation. They started from a Land
Ginzburg free energy functional depending on the bulk f
551063-651X/97/55~1!/701~7!/$10.00
-

d-

t

t

a
-
is

’’

e

t

gy
-
n
A

-
e

energy density and including a~¹f!2 term. In their study an
asymptotic analysis was conducted to demonstrate that
model recovers the classical sharp interface formulat
when the interfacial layer is sufficiently thin; moreover, th
characteristic parameters of the PFM were related to the
tual material properties. However, their model failed to d
scribe properly the segregation of solute at the interface
the partition coefficient resulted a decreasing function of
front velocity.

In a successive study Wheeler, Boettinger, and McFad
~WBM2! @7# identified the origin of this inconsistency, ob
serving that an energy cost is associated not only to the
dients of thef field, but to the gradients of concentration
well. To account for this effect, the new model they dev
oped included a (¹c)2 term, acting to oppose the contractio
of the solute profile at large velocities. An asymptotic ana
sis was performed in the limit of steady growth and f
e/d→0, wheree andd are the coefficients of the phase-fie
and concentration gradient energies, respectively. Equal
ute diffusivities were assumed in the solid and liquid phas
Within these limits the solute segregation at the moving
terface was properly described, and the results of the C
were substantially recovered.

However, rapid solidification of binary mixtures often in
volves melting and regrowth of thin films~1025 cm! depos-
ited onto a substrate as, for example, in pulsed-laser me
experiments@8#. In these conditions the steady regime cou
hardly be observable and the analysis of the growth proc
should be focused on its transient characteristics. This is
aim of the present study: the planar isothermal growth o
solid germ is numerically simulated and followed during t
transient stage when the solute profile is not yet fully dev
oped.

The time dependent equations of the phase-field mo
are derived starting from an entropy functional, along t
lines suggested by Penrose and Fife@9# and successively
followed by Wanget al. @10# and Warren and Boettinge
@11#. The inclusion of the (¹c)2 term makes the model for
mulation very similar to that given by WBM2. We allow fo
701 © 1997 The American Physical Society
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702 55M. CONTI
different solute diffusivities in the solid and liquid phase
and the effect of the ratioe/d on the growth process is als
analyzed. We found that in the transient stage the so
segregation at the solid-liquid interface deviates from
predictions of the CGM, as the solute partitioning is co
trasted by the energy cost required to substain largec gradi-
ents.

The paper is organized as follows: in Sec. II the gove
ing equations will be derived, starting from an entropy fo
mulation of the model; the equations will be utilized to stu
the solidification of a nickel-copper ideal solution. In Sec.
some details of the numerical method will be given, and
Sec. IV the results of the numerical simulations will be p
sented. The conclusions will follow in Sec. V.

II. DEVELOPMENT OF THE MODEL

A. Derivation of the governing equations

The system is an initially undercooled binary alloy
componentsA ~solvent! andB ~solute!. As a starting point
we define an entropy functional as

S5E Fs~e,f,c!2
e2

2 U“fU22 d2

2 U“cU2Gdv, ~1!

where integration is performed over the system volume;s is
the thermodynamic entropy that depends on the internal
ergy densitye and on the concentration and phase fields;
coefficientse andd account for the gradient term correction
The phase fieldf assumes the valuesf50 in the solid and
f51 in the liquid; intermediate values correspond to t
interface between the two phases. A conservation law g
erns the solute transport

ċ52“•Jc . ~2!

To ensure that the local entropy production is always po
tive, the solute flux can be written in a simple form as

Jc5Mc“
dS
dc

, ~3!

and the evolution of the phase field is given by

ḟ5Mf

dS
df

, ~4!

whereMc andMf are positive constants.
The variational derivatives in the above equations

given by

dS
dc

5
]s

]c
1d2¹2c5

mA2mB

T
1d2¹2c, ~5!

dS
df

5
]s

]f
1e2¹2f. ~6!

In Eq. ~5! mA andmB are the chemical potentials of the so
vent and the solute, given for an ideal solution, respectiv
by
,

te
e
-

-
-

n
-

n-
e

v-

i-

e

y,

mA5 f A~f,T!1
RT

vm
ln~12c!, ~7!

mB5 f B~f,T!1
RT

vm
ln~c!. ~8!

HereR is the gas constant andvm is the molar volume;f A

and f B are the free-energy densities of the pure speciesA and
B. To evaluatef A, the internal energy density of pureA is
postulated of the form

eA~T!5es
A~T!1p~f!@el

A~T!2es
A~T!#, ~9!

wherees
A andel

A are the internal energy densities in the so
and in the liquid phases, respectively; the functionp~f! is
monotonically increasing fromp~0!50 in the solid to
p~1!51 in the liquid. Assuming constant and equal valu
for the specific heatCA in both phases, the energy densiti
es
A andel

A can be written as

es
A~ t !5es

A~Tm
A !1CA~T2Tm

A !, ~10!

el
A~T!5el

A~Tm
A !1CA~T2Tm

A !, ~11!

whereTm
A is the melting temperature of pureA.

The difference

LA5el
A~Tm

A !2es
A~Tm

A ! ~12!

gives the latent heat per unit volume of speciesA. Then
f A(f,T) can be written as

f A5TGA~f!1@es
A~Tm

A !2CATm
A1p~f!LA#S 12

T

Tm
A D

2CAT lnS T

Tm
A D . ~13!

In Eq. ~13! the functionGA~f! is given by

GA~f!5 1
4W

Af2~12f!2, ~14!

that is, a symmetric double well potential with equal minim
at f50 andf51, scaled by the positive well heightWA.

Choosing the functionp~f! as p~f!5f3~10215f16f2!
the condition is enforced that bulk solid and liquid are d
scribed byf50 andf51, respectively, for every value o
temperature. Equation~13! still holds for the free energyf B

if all the material parameters, labeled with the superscripA
are replaced with the ones related to theB species.

Now the free energy of the solution is introduced as

f5~12c!mA1cmB ~15!

and use is made of the thermodynamic equation

]s

]f
52

1

T

] f

]f
. ~16!

Then Eqs.~4!, ~6!–~8!, ~13!, ~15!, and~16! yield the dynamic
evolution of the phase field as
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]f

]t
5Mf@e2¹2f2~12c!HA~f,T!2cHB~f,T!#, ~17!

where the functionHA(f,T) is defined as

HA~f,T!5G8~f!2p8~f!LA
T2Tm

A

TTm
A ~18!

and a similar expression holds forHB(f,T).
Starting from Eqs.~2!, ~3!, and~5! and observing that

¹
mA2mB

T
5

]

]f

mA2mB

T
¹f1

]

]c

mA2mB

T
¹c, ~19!

where

]

]f

mA2mB

T
5HA~f,T!2HB~f,T!, ~20!

]

]c

mA2mB

T
52

R

vm

1

c~12c!
~21!

the dynamic equation for the concentration field is written

]c

]t
52“•HDcc~12c!

vm
R

“~d2¹2c!1Dcc~12c!
vm
R

3@HA~f,T!2HB~f,T!#“f2Dc“cJ . ~22!

In Eq. ~22! the standard definition of the solute diffusivityDc
has been recovered taking

Dc5
Mc

c~12c!

R

vm
. ~23!

Here and in the following the approximation is ma
CA5CB5C. The model is then synthetized through Eq
~17! and ~22!. As the solute diffusivity is quite different in
the solid and liquid phases, in the followingDc will be taken
as

Dc5Ds1p~f!~Dl2Ds!, ~24!

Dl and Ds being the diffusivities in the liquid and in th
solid, respectively.

B. The nondimensional equations

A nondimensional version of the model is obtained sc
ing lengths to some reference scalej, and time toj2/Dl ; the
nondimensional temperature is defined asu5C(T2Tm

A)/LA

and the function HA,B(f,T) is scaled as
H̃A,B(f,T)5(vm/R)H

A,B(f,T).
We allowMf to depend on the local composition as

Mf5~12c!Mf
A1cMf

B ~25!
s

.

l-

and we define the following nondimensional parameters:

L̃5
LB

LA
ẽA,B5

e

jAWA,B

n5
Mf

A

Mf
B u*5

C~Tm
A2Tm

B !

LA

~26!

m5
Mf

Be2

Dl
E5

vm
R

d2

j2

W̃A,B5
vm
R

WA,B aA,B5
LA,B

CT

LA,B

Tm
A,B

j2

e2
ẽA,B.

Then the nondimensional equations of the model becom

]f

]t
5@~12c!n1c#m¹2f2@~12c!n1c#m

3H ~12c!FG8~f!

ẽA2
2
p8~f!aAu

ẽA
G

1cFG8~f!

ẽB2
2
p8~f!aB~u1u* !

ẽBL̃
G J , ~27!

]c

]t
5“•$l~f!“c2c~12c!l~f!“~E¹2c!2c~12c!l~f!

3@H̃A~f,T!2H̃B~f,T!#“f%, ~28!

where, in Eq.~28! l~f! is defined as

l~f!5
Ds

Dl
1p~f!S 12

Ds

Dl
D . ~29!

C. Numerical values of the parameters

The model parametersaA,B,ẽA,B,W̃A,B,m,n can be asso-
ciated to the physical properties of the alloy compone
analyzing the planar solution of the phase-field equations
both isothermal steady growth and isothermal coexistenc
liquid and solid. Details of this derivation are given in@6#
and @11#; below only the results are synthesized:

aA,B5
LA,B

CT

jLA,B

6&sA,B

ẽA,B5
hA,B

j

W̃A,B5
vm
R

12sA,B

&Tm
A,BhA,B

m5
bBsBTm

B

DlL
B

n5
bAsATm

ALB

bBsBTm
BLA

, ~30!
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704 55M. CONTI
wheresA,B is the surface tension of pureA or B; bA,B is the
kinetic undercooling coefficient, that relates the interface
dercooling to the interface velocity throug
v5bA,B(Tm

A,B2T). In the phase-field model, for a pure su
stance, the interface thickness is a free and independen
rameter, that has been indicated in Eq.~30! throughhA,B. As
e is not allowed to depend on concentration, Eqs.~26! and
~30! force the condition

hB

hA
5

sATm
B

sBTm
A . ~31!

The gradient concentration coefficientd, following the sug-
gestion of WBM2, will be chosen so thate/d!1.

Table I summarizes the values of the thermophys
properties of nickel (A) and copper (B) utilized to estimate
the above parameters. The length scale was fixed
j52.131024 cm; a realistic value ofhA was selected as
hA51.6831027 cm. With e/d58.7531023, it results:
aAT/Tm

A5395.62; aBT/Tm
B5347.28; ẽ A58.0031024;

ẽ B58.0231024; W̃A50.965; W̃B50.961; L̃50.735;
m5350;n51.01;E5831023.

III. THE NUMERICAL METHOD

Equations~27! and ~28! have been solved on a comput
tional domain2xm<x<xm with xm large enough to preven
finite size effects. Neumann conditions were imposed at
domain’s boundaries. Initially in the undercooled melt,
uniform temperature and concentrationT and c`, a solid
germ is nucleated at the center of the domain atx50; the
germ thickness is the minimum required to prevent remelt
and to ensure the successive growth. The germ struc
profile is obtained through a smooth tanh-like interpolat
of thef field between the values corresponding to the so
and liquid phases; the interface width is chosen asẽ A, that is
the nondimensional interface width of the pure solvent. T
germ composition is assumed to bec(0,0)5c` when the
melt temperature isT,1702.5 K; c~0,0! is chosen on the
solidus line forT.1702.5 K. An explicit Euler integration
scheme was employed to advance the solution forward
time; second order central differences were used to discre
the Laplace operator. To ensure an accurate resolutio
both the phase-field and concentration profiles, the grid sp
ing was selected asDx50.5ẽ A; a time stepDt50.4310210

was required for numerical stability. To verify the cons
tency of the numerical scheme, at each time step the so

TABLE I. Material parameters for the Ni-Cu alloy.

Nickel Copper

Tm ~K! 1728 1358
L ~J/cm3! 2350 1728
vm ~cm3/mole!a 7.0 7.8
s ~J/cm2! 3.731025 2.831025

b ~cm/K s!b 160 198
Dl ~cm2/s! 1025 1025

aAn average value of 7.4 will be taken.
bFrom the estimation of Willnecker, Herlach, Feuerbacher@12#.
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conservation was checked and in all the simulations w
verified within 0.001%.

IV. NUMERICAL RESULTS

The model presented above was proposed in a very s
lar version by WBM2, starting from a free-energy formul
tion; they developed an asymptotic analysis fore/d→0 and
solved in this limit the time independent equations. Eq
solute diffusivities were assumed in the solid and liqu
phases. As a result, given the far field concentration,
with temperature values below an upper limit, steady so
tions were found for the interface velocity.

It is the aim of this section to study the growth proce
during its time evolution, until the solute profile is fully de
veloped. At first, we present the results that correspond to
choice Ds50. Excepting for temperatures, dimensionle
units will be used throughout this section.

Figure 1 shows, in the (c,T) plane, the portion of the
equilibrium phase diagram of the alloy that will be explor
in the following. The initial concentration of the melt is s
to c`50.072 14, that belongs to the solidus line atT51699.8
K. The solute segregation on the moving front is evalua
computing the maximum valuecmax of c(x,t), that identifies
the concentrationcl on the liquid side of the interface. Th
solid dots superimposed on the graph represent the p
cmax, T corresponding to the steady long time solutio
found in the numerical simulations. As expected,cmax in-
creases with increasing the melt temperature, i.e., as the
velocity decreases. It is also indicated on the graph~dashed
curve! theT0 line, i.e., the locus of the pairsc, T for which
the Helmholtz free energy of the liquid and solid are equ

For T<1702 K after an initial transient the growth pro

FIG. 1. A portion of the equilibrium phase diagram of the Ni-C
alloy, computed from the data given in Table I. The vertical li
corresponds to the value ofc` used in the simulations. The soli
dots represent the pairs~cmax,T! corresponding to the steady solu
tions found in the present study. From top to bottom, the co
sponding steady velocities are, in nondimensional units,v52220,
v53600,v54980,v57725,v514 590,v521 455. It is also indi-
cated~dashed curve! theT0 line.
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cess reaches steady state conditions, with the front velo
being a decreasing function ofT; at T51704 K it is clearly
recognizable a long time evolution towards a diffusive
gime, with the interface velocity decaying with time a
v}t21/2. This behavior is shown in Fig. 2, where, for the
two values of temperature, the interface velocity is rep
sented versus time in a log-log plot.

Figure 3 shows the solute concentration profile at th
different times; the system temperature isT51697.5 K, a
value that ensures long time steady growth. The steady
ute boundary layer is developed along a transient time th
reflected in a distance of growth of aboutx50.035; within
this transient the liquid composition at the interface increa
from c` to its steady value. Correspondingly, due to sol
segregation, the interface solid compositioncs ~which his-
tory can be reconstructed from the graph! falls from c` to a
minimum at x50.008, and reaches againc` at the steady
state. The damped oscillation of the solute profile ahead

FIG. 2. Evolution of the front velocity with time forT51702 K
~upper curve! andT51704 K ~lower curve!.

FIG. 3. Solute concentration profiles forT51697.5 K, at three
different times: t50.531026 ~solid line!, t51.031026, ~dashed
line! and t55.031026 ~dotted line!; time is given in nondimen-
sional units.
ity

-

-

e

ol-
is

s
e

of

the interface was predicted by WBM2 for sufficiently hig
growth velocity.

For the same value of temperature Fig. 4 showscs andcl
versus time. Solute segregation starts at the beginning o
growth process and a concentration gap is developed a
interface. The solid concentration falls to a minimum duri
the first stage of the growth, thencs follows the increase of
cl until the steady value is reached. The liquid concentrat
evolves towards the steady value passing through a m
mum at t51.4631026; the duration of the transient is con
fined within t<431026. The nonmonotonic evolution ofcl
is probably due to the fourth order diffusion equation, and
not expected for the classical second order diffusion pr
lem.

The continuous growth model of Aziz and Kaplan@4#
gives the dependence of the partition coefficient on
growth velocity in the form

k~v !5
ke1v/vd
11v/vd

, ~32!

wherevd is a characteristic kinetic velocity for solute trap
ping, which is often taken asD/a, D being an interface
diffusivity, and a the interatomic spacing. This result wa
substantially recovered by WBM2 for the long time stea
solution of the phase-field model.

To extend the predictions of the CGM to the transie
growth, Eq.~32! is solved forvd fixing v andk(v) at their
steady values, found atT51697.5 K. Withke50.797, it re-
sults vd583.57. Then the partition coefficient, as given b
Eq. ~32!, is evaluated during the growth process, using
actual interface velocity. The result is compared in Fig
with the actual ratiocs/cl found in the numerical simulation
The two curves indicate a strong difference in the time h
tory of solute segregation as predicted by the two models
front of the monotonic behavior of the CGM curve, the n
merical simulation shows a partition coefficient that und
goes a damped oscillation before settling on its steady va

FIG. 4. Solute concentration on the solid side of the interfa
~lower curve! and on the liquid side of the interface~upper curve!,
versus time.T51697.5 K.
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706 55M. CONTI
The value ofcs/cl given by the numerical solution is ver
high in the first transient. It is worth noting that within th
phase-field model the front velocity is finite at the startup
the process and the CGM@Eq. ~32!# predicts an initial value
of the partition coefficientk(v),1. But the largec gradients
that would result at the interface cannot be sustained, du
the high energy cost, and a transient time is required for
partition coefficient to relax on its steady value.

To the author’s knowledge, at present no experimen
data are available to suggest whether the CGM or the P
gives a more realistic picture of the solute trapping in
early stage of the growth. The discrepancy of the two mod
is confined to a transient time of the order of 1028 s and to a
depth growth of the order of some hundreds of ångstro
The experiments of Smith and Aziz@8# on aluminum alloys
are the first performed on metallic systems; these auth

FIG. 5. Time evolution of the partition coefficientcs/cl as com-
puted from the numerical simulation~dotted line! and from Eq.~32!
~solid line!. T51697.5 K.

FIG. 6. Solute concentration on the liquid side of the interfa
versus time. The curves correspond, from top to bottom,
T51702.0 K,T51701.5 K,T51701.0 K,T51700.0 K,T51697.5
K, and T51695.0 K. The solid dots superimposed on the cur
mark the characteristic time of the transient staget* .
f

to
e

al
M
e
ls

s.

rs

studied the rapid solidification of a doped aluminum fil
deposited on a silicon substrate; pulsed-laser melting
used to obtain growth velocities in the range 0.6–5.1 m
Unfortunately, due to experimental difficulties, the analy
of the solute profile discards just the first hundreds of å
stroms interested in the regrowth process.

The effect of the melt temperature on the solute peak
the interface is shown in Fig. 6, wherecmax is represented
versus time; the curves refer to different temperature valu
The time required forcmax to reach the steady value depen
on the melt temperature, i.e., on the growth rate. This re
had to be expected; as pointed out by Wheeler, Boettin
and Mcfadden@7#, the solute profile contracts at large veloc
ties and is described by the characteristic lengthl *5j
AE[c`(12c`)](vAE!21/3; then the time scale of the tran
sient should be of the order oft*5l *2/Dl . This suggestion

,
o

s

FIG. 7. A comparison of the computed concentration profiles
different values ofE ~dotted lines! with the asymptotic forms~33!
and ~34! ~solid line!. The computed curves correspond, in order
decreasing maxima, toE5831023, E5431023, E5231023, and
E50.231023. Ds5Dl ; T51697.5 K.

FIG. 8. Solute concentration profiles for different values
Ds/Dl ; T51697.5 K,E5831023. The curves correspond~in order
of increasing maxima! to Ds/Dl50, 0.5, 1.
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is confirmed observing the solid dots superimposed on
graph that indicate, for each curve, the corresponding va
of t* . The asymptotic analysis of WBM2 was performed f
Ds5Dl , and in the limite/d→0; in these conditions, and fo
sufficiently high growth velocities, the scaled concentrat
profile c*5(c2c`)(vAE!2/3/b was shown to be a function
of the scaled coordinatex*5(x/AE![vAE/c`(12c`)] 1/3 as

c*5expS 2
x*

2 D cosS x*)2 2
p

3 D , ~33!

in the liquid ~x*.0! and

c*5 1
2 exp~x* ! ~34!

in the solid~x*,0!, whereb is given by

b5
2vm@c`~12c`!#2/3

3RT FLB T2Tm
B

Tm
B 2LA

T2Tm
A

Tm
A G . ~35!

Figure 7 showsc* versusx* for Ds5Dl and for different
values ofE, along with the curve given by Eqs.~33!–~35!.
The system temperature isT51697.5 K. It can be observe
that the asymptotic solution is recovered to a quite go
extent with E5831023, that corresponds to
e/d58.7531023. It is worth noting that due to the scaling o
c* , the true solute peak at the interface decreases as the
of c* increases, so that the curves show that lower so
gradients are associated to higher values of the energy
dient coefficient for the solute fieldd.

Figure 8 shows the influence of the ratioDs/Dl on the
steady solute profile, atT51697.5 K. The solute peak in th
liquid is enhanced as the ratioDs/Dl increases. This effect is
in qualitative agreement with the predictions of the CG
,

ys

ys
e
e

n

d

eak
te
ra-

:

increasing the interface diffusivity causes a more effect
solute-solvent redistribution across the interface resulting
a high kinetic velocityvd and, through Eq.~32!, in a high
value ofcl .

V. CONCLUSIONS

The ability of the phase-field model to describe solu
trapping during solidification was proved@7# for steady iso-
thermal growth; in these conditions the phase-field pred
tions agree with the results of the continuous growth mod
The present study extends the investigation to the early s
of the growth, when the solute profile is not yet fully deve
oped. In this stage the phase-field model and the continu
growth model describe the solute segregation at the inter
in a substantially different way.

The characteristic length of the solute profilel *5j
AE[c`(12c`)](vAE!21/3 suggests the time scale for th
transient ast*5 l * 2/Dl . The numerical results confirm thi
prediction; in the range explored the transient relaxes wit
1028 s and is reflected in a growth depth of several hundr
of angstroms. In metallurgical applications these scales
of no relevance, and the two models agree for all pract
purposes. However, the extent of the transient could h
significant implications in pulsed-laser melting of thin dop
films, conducted to remove ion implantation damages. In
case the prediction of the solute profile is strongly depend
on the model that is utilized. At present no experimental d
are available to suggest whether the CGM or the PFM gi
a more realistic picture of the solute trapping in the ea
stage of the growth. The diffusivity of the solid phase affe
in a significant way the solute distribution across the int
face; the ratiocs/cl decreases asDs increases, confirming the
suggestions of the CGM.
R.
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