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Planar isothermal solidification from an undercooled melt: Unsteady solute segregation studied
with the phase-field model

M. Conti
Dipartimento di Matematica e Fisica, Universita’ di Camerino, 62032 Camerino, Italy
(Received 10 June 1996

The planar isothermal solidification of a binary alloy is studied through the phase-field model. The model
includes gradient energy terms for both the phase and concentration fields. The long time attractor of the
process was identified in a previous study by Wheeler, Boettinger, and McFaabgs. Rev. E47, 1893
(1993] in the limit of vanishing small values & 5, wheree and 6 are the coefficients of the phase-field and
concentration gradient energies, respectively. In that limit the main results of the continuous growth model
(CGM) of Aziz and KaplanActa Metall. 36, 2335(1988] were substantially recovered. The present study is
focused on the first transient of the process, when the solute profile is not yet fully developed. We found that
in this stage the solute segregation at the solid-liquid interface deviates from the predictions of the CGM, as the
solute partitioning is contrasted by the energy cost required to substain large concentration gradients.
[S1063-651%97)07901-4
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[. INTRODUCTION energy density and including (& ¢)2 term. In their study an
asymptotic analysis was conducted to demonstrate that the
The understanding and prediction of the interfacial dy-model recovers the classical sharp interface formulation
namics in rapid solidification of binary alloys is a matter of when the interfacial layer is sufficiently thin; moreover, the
growing interest. The subject was addressed in several stugharacteristic parameters of the PFM were related to the ac-
ies and through different perspectives. tual material properties. However, their model failed to de-
Sharp interface models utilize the diffusion equation toSCribe properly the segregation of solute at the interface, as
describe the long range transport of solfteZ]; the bound- the partition coefficient resulted a decreasing function of the

ary conditions imposed at the solid-liquid interface reflectffont velocity.

; s : In a successive study Wheeler, Boettinger, and McFadden
two different constraintsi) the conservation of solute across A o S S e
the moving front, andii) a couple of constitutive laws that (WBM2) [7] identified the origin of this inconsistency, ob-

relate the composition of the growing solid and the frontsgrving that an energy cost is assqciated not only to Fhe gra-

. . : dients of the¢ field, but to the gradients of concentration as
velocity v to the temperaturd and to the interfacial melt well. To account for this effect, the new model they devel-
composition. The Igtter conditions are 'deri'ved through aOpea included aYc)? term, actiﬁg to oppose the contraction
separate modelization of the interface kinetics on a miCrog e solute profile at large velocities. An asymptotic analy-
scopic scale. Much effort has been devoted to this point. It igs \yas performed in the limit of steady growth and for
well known that in rapid solidification processes the partiti0n6/5ﬁoy wheree and & are the coefficients of the phase-field
coefficientk (the ratio of solute concentratianin the grow-  anq concentration gradient energies, respectively. Equal sol-
ing solid to that in the liquid at the interfaceeviates from  yte diffusivities were assumed in the solid and liquid phases.
its equilibrium valuek, and increases towards unity at large within these limits the solute segregation at the moving in-
growth rates. This phenomenon, termed “solute trapping”terface was properly described, and the results of the CGM
[3], was explained by Aziz and Kapldd] and Aziz and  were substantially recovered.

Boettinger[5] within the continuous growth mod€CGM) However, rapid solidification of binary mixtures often in-
as the result of a diffusive redistribution of the solute and thevolves melting and regrowth of thin filmd0~° cm) depos-
solvent across the moving front. ited onto a substrate as, for example, in pulsed-laser melting

A different technique to investigate alloy solidification is experimentg8]. In these conditions the steady regime could
based on the phase-field modBFM). Within this approach hardly be observable and the analysis of the growth process
a phase fieldp(x,t) characterizes the phase of the system ashould be focused on its transient characteristics. This is the
each point. A free-energipr entropy functional is then con- aim of the present study: the planar isothermal growth of a
structed, that depends afias well as on the concentration solid germ is numerically simulated and followed during the
and temperature fields. Gradient terms account for the enerdyansient stage when the solute profile is not yet fully devel-
cost associated to the solid-liquid interface. The extremizaeped.
tion of the functional in respect to these variables results in The time dependent equations of the phase-field model
the dynamic equations for the evolution of the process. Aare derived starting from an entropy functional, along the
first PFM for solidification of binary solutions was devel- lines suggested by Penrose and Hi® and successively
oped by Wheeler, Boettinger, and McFadd&¥BM1) [6] in  followed by Wanget al. [10] and Warren and Boettinger
the isothermal approximation. They started from a Landauf11]. The inclusion of the ¥c)? term makes the model for-
Ginzburg free energy functional depending on the bulk freenulation very similar to that given by WBM2. We allow for
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different solute diffusivities in the solid and liquid phases, RT
and the effect of the ratie/s on the growth process is also puh=1A¢, T)+ o In(1—-c), (7)
analyzed. We found that in the transient stage the solute m

segregation at the solid-liquid interface deviates from the RT

predictions of the CGM, as the solute partitioning is con- uB=18(4,T)+ — In(c). (8)
trasted by the energy cost required to substain largeadi- Um

ents.

The paper is organized as follows: in Sec. Il the govern m .
ing equations will be derived, starting from an entropy for- andf® are the free-energy densities of the pure spetiead
mulation of the model: the equations will be utilized to study B- T0 evaluatef”, the internal energy density of pureis
the solidification of a nickel-copper ideal solution. In Sec. llI postulated of the form
some details of the numerical method will be given, and in
Sec. IV the results of the numerical simulations will be pre-
sented. The conclusions will follow in Sec. V.

HereR is the gas constant ang, is the molar volumef”

eNT)=ef(T)+p()[eNT)—eXT)], (9)

wheree£ ande{* are the internal energy densities in the solid
and in the liquid phases, respectively; the functpi) is
Il. DEVELOPMENT OF THE MODEL monotonically increasing fromp(0)=0 in the solid to
p(1)=1 in the liquid. Assuming constant and equal values

_ o ) for the specific hea€” in both phases, the energy densities
The system is an initially undercooled binary alloy of g4 andef can be written as

componentsA (solven) andB (solute. As a starting point
we define an entropy functional as eSA(t)ze’S*(Tﬁ)JrCA(T—Tﬁ), (10)

A. Derivation of the governing equations

62 2
szf s(e.$.0)~ 5 Ve’ 5 |Vc2ldv, (1) ef'(T)=ef'(Tr) + CAT—Tp), (1D
) o ] whereT % is the melting temperature of pure
where integration is performed over the system volusis; The difference
the thermodynamic entropy that depends on the internal en-
ergy densitye and on the concentration and phase fields; the LA:e{*(TQ)—eﬁ(TQ) (12)

coefficientse and § account for the gradient term corrections.

The phase fieldp assumes the valueg=0 in the solid and gives the latent heat per unit volume of speciesThen

#=1 in the liquid; intermediate values correspond to thef”(¢,T) can be written as

interface between the two phases. A conservation law gov-

erns the solute transport T
P PA=TGA(¢) +[ef (T —C ot p<¢>LA]( - T—A)

c=-V-J.. (2 m

T
T_A) . (13

ion i i —C*TIn
To ensure that the local entropy production is always posi-
tive, the solute flux can be written in a simple form as

In Eq. (13) the functionG”(¢) is given by

oS
=MV e ® GA($) = FWAGA(1- 62 14
and the evolution of the phase field is given by that is, a symmetric double well potential with equal minima
at =0 and¢=1, scaled by the positive well heigh*.
: 58 Choosing the functiomp(¢) as p(¢)=¢3(10—15¢+6¢?)
¢=My % (4 the condition is enforced that bulk solid and liquid are de-
scribed by¢$=0 and ¢=1, respectively, for every value of
whereM, andM , are positive constants. temperature. Equatiofi3) still holds for the free energj/B'
The variational derivatives in the above equations ard' 2l the material parameters, labeled with the supersekipt
given by are replaced with the ones related to Bispecies.
Now the free energy of the solution is introduced as
8 s oo Bt Lo, _ A B
6C_ﬁc+6v c= T +6°V-ec, (5) f=(1-c)u"+cu (15
and use is made of the thermodynamic equation
oS ds ., ,
%—%‘FGV(Z). (6) Js 1 af

% = - ? ﬁ (16)
In Eq. (5) x* and u® are the chemical potentials of the sol-
vent and the solute, given for an ideal solution, respectivelyThen Eqgs(4), (6)—(8), (13), (15), and(16) yield the dynamic

by evolution of the phase field as
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d and we define the following nondimensional parameters:
i My[€VZp—(1—c)HA($,T)—cHB(¢,T)], (17)

~ LB _ €
L= — EA'B_
where the functioH”(,T) is defined as L £JWAB
T-Th M’ C(Th—TH)
A o N A m __¢ * _ m m
H%(¢, T)=G'(¢)—p'($)L T (18 n ME LA
(26)
and a similar expression holds fB®(¢,T). M5 e? Um 62
Starting from Eqgs(2), (3), and(5) and observing that m= D, E= R &
A B A B A B
Mo d ut—u Jd u—u - v LAB LAB £2

= — AB_"M \\ AB AB_ S ~AB

where Then the nondimensional equations of the model become
9 uh—pub d
73 ’ T“ —HA(,T)— HB(,T), (20) —(f:[(1—c)n+c]mv2¢—[(1—c)n+c]m

9 uh—uB R 1 G'(¢) p'(¢)a’u

ok r__ 7 (21) XN(A=0)| = =

gc T vm C(l—cC) € €

’ ’ B
the dynamic equation for the concentration field is written as c G'(¢) pP(Pa (~“+“*) ] @7
€82 €L '

= v.{Dc(1-0) V(YO DL 0) T g
E:V.{)\(¢)Vc—c(l—c))\(d))V(EVZC)—C(l—C))\(d’)
A _ 4B — o O
X[HA(¢,T)—H®(¢,T)]V$—DVc/. (22 X[HA(¢, T)—HB($,T)1V ¢}, (28)
In Eq. (22) the standard definition of the solute diffusividy, where, in Eq(28) M¢) is defined as
has been recovered taking D D
e M"’):E+p(¢)(l_ﬁ.>' 29
= e1=0) v (23

C. Numerical values of the parameters
Here and in the following the approximation is made The model parameters™B €48 WAB m,n can be asso-
A_~B_ H . ’ ’ s 1,
C"=C"=C. The model is then synthetized through EQs.cjated to the physical properties of the alloy components
(17) and (22). As the solute diffusivity is quite different in analyzing the planar solution of the phase-field equations for
the solid and liquid phases, in the followily, will be taken  poth jsothermal steady growth and isothermal coexistence of

as liquid and solid. Details of this derivation are given [i]
and[11]; below only the results are synthesized:
D¢=Ds+p(#)(D;—Dy), (24) nE o an
P
D, and Dy being the diffusivities in the liquid and in the CT vaghB
solid, respectively. hAB
TAB_—
B. The nondimensional equations
A nondimensional version of the model is obtained scal- wAB_Ym 1204F
ing lengths to some reference scgjeand time to&%/D, ; the R ‘/QTnghA B
nondimensional temperature is defineduasC(T—T4)/LA ’ 5 BB
and the functon HAB(4,T) is scaled as M= Bo T
HAB(¢, T) = (v /R)IHAB(,T). D,LB
We allow M , to depend on the local composition as A _ATA| B
¢ BAATAL

My=(1-c)M%+cM5 (25)

" ST 30
m
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TABLE |. Material parameters for the Ni-Cu alloy.

1710
Nickel Copper

T (K) 1728 1358
L (Jlen?) 2350 1728 1706
vm (cm/mole)? 7.0 7.8 2
o (Jlen?) 3.7x10°° 2.8x10°° o
B (cm/K 9P 160 198 2 10
D, (cmls) 10°° 10°° g

g
8An average value of 7.4 will be taken. =
PFrom the estimation of Willnecker, Herlach, Feuerbadi&y. 1698
whered™ B is the surface tension of pufeor B; g8 is the
kinetic undercooling coefficient, that relates the interface un-
dercooling to the interface  velocity through 1694 . . L
v=pB"B(TAB—T). In the phase-field model, for a pure sub- 0.070 0.074 0.078 0.082 0.086
stance, the interface thickness is a free and independent pa- Solute concentration

rameter, that has been indicated in E2f) throughh™B. As
€ is not allowed to depend on concentration, E@§) and

(30) force the condition FIG. 1. A portion of the equilibrium phase diagram of the Ni-Cu

alloy, computed from the data given in Table I. The vertical line
8 B corresponds to the value of° used in the simulations. The solid
h o Th dots represent the paifsa,T) corresponding to the steady solu-
3D tions found in the present study. From top to bottom, the corre-
sponding steady velocities are, in nondimensional units2220,

. . - . v=3600,v=4980,v=7725,v=14 590,v =21 455. It is also indi-
The gradient concentration coefficieéit following the sug- cated(dashed curvethe T, line.

gestion of WBM2, will be chosen so thaté<1.
Table | summarizes the values of the thermophysicatonservation was checked and in all the simulations was

properties of nickel A) and copper B) utilized to estimate ,arified within 0.001%.

the above parameters. The length scale was fixed at

£=2.1x10"* cm; a realistic value oh® was selected as

hA=1.68<10"" cm. With €8=8.75x1073 it results:

h O'BT'r?q '

IV. NUMERICAL RESULTS

gABT/Tﬁ=395_-?2; ~CXBT/T51=34Z-,288; €”=8.00<10"% The model presented above was proposed in a very simi-
€-=8.02X10""% W =0.§g5; W==0.961; L=0.735; Ilar version by WBM2, starting from a free-energy formula-
m=350;n=1.01;E=8X10 ~. tion; they developed an asymptotic analysis &#%—0 and
solved in this limit the time independent equations. Equal
Ill. THE NUMERICAL METHOD solute diffusivities were assumed in the solid and liquid

phases. As a result, given the far field concentration, and

Equations(27) and (28) have been solved on a computa- with temperature values below an upper limit, steady solu-
tional domain— x,,<X<x,, with x,, large enough to prevent tions were found for the interface velocity.
finite size effects. Neumann conditions were imposed at the It is the aim of this section to study the growth process
domain’s boundaries. Initially in the undercooled melt, atduring its time evolution, until the solute profile is fully de-
uniform temperature and concentratidnand c¢*, a solid  veloped. At first, we present the results that correspond to the
germ is nucleated at the center of the domaixa0; the  choice D;=0. Excepting for temperatures, dimensionless
germ thickness is the minimum required to prevent remeltinginits will be used throughout this section.
and to ensure the successive growth. The germ structural Figure 1 shows, in thec(T) plane, the portion of the
profile is obtained through a smooth tanh-like interpolationequilibrium phase diagram of the alloy that will be explored
of the ¢ field between the values corresponding to the solidn the following. The initial concentration of the melt is set
and liquid phases; the interface width is chose® 8sthatis  to c*=0.072 14, that belongs to the solidus lineTat1699.8
the nondimensional interface width of the pure solvent. TheK. The solute segregation on the moving front is evaluated
germ composition is assumed to b€0,0)=c” when the computing the maximum value,,., of c(x,t), that identifies
melt temperature i§<1702.5 K;c(0,0 is chosen on the the concentratiort, on the liquid side of the interface. The
solidus line forT>1702.5 K. An explicit Euler integration solid dots superimposed on the graph represent the pairs
scheme was employed to advance the solution forward ie,,,, T corresponding to the steady long time solutions
time; second order central differences were used to discretizeund in the numerical simulations. As expected,, in-
the Laplace operator. To ensure an accurate resolution affeases with increasing the melt temperature, i.e., as the front
both the phase-field and concentration profiles, the grid spaselocity decreases. It is also indicated on the gr&fdshed
ing was selected a&x=0.5¢"; a time stepAt=0.4x10"1°  curve the T, line, i.e., the locus of the pairs, T for which
was required for numerical stability. To verify the consis- the Helmholtz free energy of the liquid and solid are equal.
tency of the numerical scheme, at each time step the solute For T<1702 K after an initial transient the growth pro-
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FIG. 2. Evolution of the front velocity with time foF =1702 K 02, (1

(upper curvg and T=1704 K (lower curve. . o ]
FIG. 4. Solute concentration on the solid side of the interface

. . ( he liquid si f the interf
cess reaches steady state conditions, with the front velocmg/ower curvg and on the liquid side of the interfacapper curvé

being a decreasing function @f, at T=1704 K it is clearly ersus timeT =1697.5 K.
recognizable a long time evolution towards a diffusive re-
gime, with the interface velocity decaying with time as
vt Y2 This behavior is shown in Fig. 2, where, for these
two values of temperature, the interface velocity is repre
sented versus time in a log-log plot.

the interface was predicted by WBM2 for sufficiently high
growth velocity.

For the same value of temperature Fig. 4 showandc,
versus time. Solute segregation starts at the beginning of the
rowth process and a concentration gap is developed at the

_Figure 3 shows the solute concentration profile at threg, o 506 The solid concentration falls to a minimum during
different times; the system temperatureTis-1697.5 K, a he first stage of the growth, then follows the increase of
value that ensures .Iong time steady growth. The ;teady SQ', until the steady value is reached. The liquid concentration
ute boundary layer is developed along a transient time that ISvolves towards the steady value passing through a maxi-
reflected in a distance of growth of about0.035; within |\ m att=1.46x10"% the duration of the transient is con-
this transient the liquid composition at the interface increaseﬁned withint$4><10"6. The nonmonotonic evolution af,

from ¢” to its steady value. Correspondingly, due to soluteig  ohaply due to the fourth order diffusion equation, and is
segregation, the interface solid composition(which his-

not expected for the classical second order diffusion prob-
tory can be reconstructed from the gragfdlls fromc™ to a P P

e . lem.
minimum atx=0.008, and reaches agaii at the steady The continuous growth model of Aziz and Kaplé

state. The damped oscillation of the solute profile ahead Oéives the dependence of the partition coefficient on the
growth velocity in the form

7.24
ketv/vg

KO =TTy

(32

wherevy is a characteristic kinetic velocity for solute trap-
ping, which is often taken aB/a, D being an interface
diffusivity, and a the interatomic spacing. This result was
substantially recovered by WBM2 for the long time steady
solution of the phase-field model.

To extend the predictions of the CGM to the transient

721 growth, Eq.(32) is solved forvq fixing v andk(v) at their
steady values, found dt=1697.5 K. Withk,=0.797, it re-
sultsvy4=83.57. Then the partition coefficient, as given by

220 . . Eq. (32), is evaluated during the growth process, using the

0.00 0.05 0.10 015 actual interface velocity. The result is compared in Fig. 5

with the actual ratia¢/c, found in the numerical simulation.
The two curves indicate a strong difference in the time his-
FIG. 3. Solute concentration profiles fdr=1697.5 K, at three tory of solute segregation as predicted by the two models; in
different times:t=0.5x10"° (solid line), t=1.0x10%, (dashed front of the monotonic behavior of the CGM curve, the nu-
line) and t=5.0x10"® (dotted ling; time is given in nondimen- merical simulation shows a partition coefficient that under-
sional units. goes a damped oscillation before settling on its steady value.

X
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FIG. 5. Time evolution of the partition coefficient/c, as com- FIG. 7. A comparison of the computed concentration profiles for
puted from the numerical simulatigdotted ling and from Eq(32) different values of (dotted lineg with the asymptotic form¢33)
(solid line). T=1697.5 K. and(34) (solid line). The computed curves correspond, in order of

decreasing maxima, tE=8x10"3, E=4x10"%, E=2x10"3, and

The value ofcg/c given by the numerical solution is very E=0.2x10"3. Ds=D,; T=1697.5 K.
high in the first transient. It is worth noting that within the
phase-field model the front velocity is finite at the startup ofstudied the rapid solidification of a doped aluminum film
the process and the CGNEq. (32)] predicts an initial value deposited on a silicon substrate; pulsed-laser melting was
of the partition coefficienk(v) <1. But the largec gradients  used to obtain growth velocities in the range 0.6-5.1 m/s.
that would result at the interface cannot be sustained, due tgnfortunately, due to experimental difficulties, the analysis
the high energy cost, and a transient time is required for thef the solute profile discards just the first hundreds of ang-
partition coefficient to relax on its steady value. stroms interested in the regrowth process.

To the author’'s knowledge, at present no experimental The effect of the melt temperature on the solute peak at
data are available to suggest whether the CGM or the PFNhe interface is shown in Fig. 6, whetg,,, is represented
gives a more realistic picture of the solute trapping in theversus time; the curves refer to different temperature values.
early stage of the growth. The discrepancy of the two modelghe time required foc,,,, to reach the steady value depends
is confined to a transient time of the order of & andtoa  on the melt temperature, i.e., on the growth rate. This result
depth growth of the order of some hundreds of dngstromshad to be expected; as pointed out by Wheeler, Boettinger,
The experiments of Smith and Azj8] on aluminum alloys  and Mcfadder7], the solute profile contracts at large veloci-
are the first performed on metallic systems; these authorgses and is described by the characteristic length=¢

VE[c”(1—c™)](vVE) Y3 then the time scale of the tran-

7.24 sient should be of the order 6f=/*2D, . This suggestion
7.24
7.23
. 723 |
S L
=
© 722
721 ':9
721
7.20
80 75 70 65 60 55 50 45 40
log,, (©) 7.20
0.10 0.12 0.14 0.16 0.18 0.20
FIG. 6. Solute concentration on the liquid side of the interface, x
versus time. The curves correspond, from top to bottom, to
T=1702.0 K,T=1701.5 K,T=1701.0 K,T=1700.0 K,T=1697.5 FIG. 8. Solute concentration profiles for different values of

K, and T=1695.0 K. The solid dots superimposed on the curvesD¢/D,; T=1697.5 K,E=8x10"3, The curves correspor(éh order
mark the characteristic time of the transient stélye of increasing maximato D¢/D,=0, 0.5, 1.
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is confirmed observing the solid dots superimposed on thencreasing the interface diffusivity causes a more effective
graph that indicate, for each curve, the corresponding valueolute-solvent redistribution across the interface resulting in
of t*. The asymptotic analysis of WBM2 was performed for a high kinetic velocityv4 and, through Eq(32), in a high
D.=D,, and in the limite/5—0; in these conditions, and for value ofc; .

sufficiently high growth velocities, the scaled concentration

profile c* = (c—c”) (v VE)¥¥B was shown to be a function V. CONCLUSIONS

of the scaled coordinate* =(x/E)[vVE/c*(1~c”)]® as The ability of the phase-field model to describe solute
o+ V3 trapping during solidification was provéd] for steady iso-

c* =exp{ - —) 005( - _), (33  thermal growth; in these conditions the phase-field predic-

2 2 3 tions agree with the results of the continuous growth model.

The present study extends the investigation to the early stage

in the liquid (x*>0) and of the growth, when the solute profile is not yet fully devel-

c* =1 exp(x*) (34) oped. In this stage the phase-field model and the continuous
z growth model describe the solute segregation at the interface
in the solid(x*<0), whereg is given by in a substantially different way.

The characteristic length of the solute profilé=¢
VE[c”(1—c™)](vVE) ¥ suggests the time scale for the
transient ag* =1*2/D,. The numerical results confirm this
prediction; in the range explored the transient relaxes within
Figure 7 shows* versusx* for D,=D, and for different 107®s and is reflected in a growth depth of several hundreds
values ofE, along with the curve given by Eq$33)—(35).  of angstroms. In metallurgical applications these scales are
The system temperature 15=1697.5 K. It can be observed of no relevance, and the two models agree for all practical
that the asymptotic solution is recovered to a quite googurposes. However, the extent of the transient could have
extent with E=8x103 that corresponds to significant implications in pulsed-laser melting of thin doped
€/ 6=8.75x103. It is worth noting that due to the scaling of films, conducted to remove ion implantation damages. In this
c*, the true solute peak at the interface decreases as the peedse the prediction of the solute profile is strongly dependent
of c* increases, so that the curves show that lower soluten the model that is utilized. At present no experimental data
gradients are associated to higher values of the energy grare available to suggest whether the CGM or the PFM gives
dient coefficient for the solute field. a more realistic picture of the solute trapping in the early

Figure 8 shows the influence of the ratin/D, on the stage of the growth. The diffusivity of the solid phase affects
steady solute profile, &t=1697.5 K. The solute peak in the in a significant way the solute distribution across the inter-
liquid is enhanced as the rati®d,/D, increases. This effect is face; the ratiac /c, decreases d3, increases, confirming the
in qualitative agreement with the predictions of the CGM:suggestions of the CGM.

_ 2upc"(1-cM)]P
- 3RT

s T-Ta AT-Th
T TA

m
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